

EEDAL 2022 - International Conference on Energy Efficiency in Domestic Appliances and Lighting

Environmental Dumping of comfort fans in Europe

Hélène Rochat, Eric Bush Topten GmbH, Schaffhauserstrasse 34, CH-8006 Zurich, <u>www.topten.ch</u>, <u>eric.bush@topten.ch</u>

03. June 2022

Abstract

Comfort fans - together with air conditioners - are regulated by the European Commission Ecodesign Regulation (EU) No 206/2012. However, unlike most Ecodesign regulations, comfort fans are only subject to information requirements and are not subject to any requirements on energy efficiency. As the revision of the Ecodesign and Energy Label regulation for fans is taking place on the European level, it is being considered to introduce minimum energy performance standards as well as an energy label for these products. In other regions of the world, such requirements already exist, including countries that produce comfort fans that are destined for the European market. The MEPS in the manufacturing countries however do not guarantee high efficiency products. The paper will illustrate the environmental dumping that is taking place in Europe where the products that are being exported from the manufacturing countries often have a lower energy efficiency performance than the domestic minimum energy performance standard in place in the country of origin. It will subsequently compare the energy efficiency of the products available in Europe with the mandatory energy efficiency requirements in China. In 2015, 25 million units were sold in the European Union. In 2020, this number increased to 52 million units. With rising temperatures, this number will continue to grow. An efficient comfort fan can also be an alternative solution to installing an air conditioner, thus achieving additional energy savings.

Keywords: air flow, product import, MEPS; energy efficiency requirements, dumping, best available technologies.

Introduction

This paper will investigate the case of environmental dumping in terms of energy efficiency of comfort fans that is taking place within the European Union. This refers to products that do not respect the domestic minimum energy performance standards (MEPS) in their country of origin but are exported to the European market where no energy efficiency requirements exist. The paper will show that existing MEPS in the country of origin are not sufficient to guarantee that a minimum energy efficiency standard is applied to exports.

The paper will also show that many countries already have requirements in place, which would make barriers and efforts for the European Union to adapt or harmonize their own requirements very low. The existing information requirements that are required in the Commission Regulation (EU) No 206/2012 for air conditioners and comfort fans are insufficient and are not being applied. Based on a market assessment performed by Topten in 2018, a significant share of models does not comply with the Chinese MEPS, which is where a greater part of comfort fans is imported from.

The expected energy savings from comfort fans was estimated at 1 TWh, however good and efficient comfort fans are in many cases a viable alternative to air conditioners. The energy savings from an increased use of comfort fans instead of new air conditioners are much more significant.

Topten, the author of this paper, is an independent platform that presents the most energy efficient products on the market for household and commercial use. To be listed, products need to fulfill the selection criteria defined by Topten. They are based on existing standards and regulations and consider the product's energy efficiency and environmental impact, resource efficiency and health impacts. The platform is used by policymakers as a source of data and science-based recommendations to develop new regulation.

Terminology

Comfort fans

According to the European Ecodesign Commission Regulation (EU) No 206/2012 for air conditioners and comfort fans, a comfort fan is an "appliance primarily designed for creating air movement around or on part of a human body for personal cooling comfort, including comfort fans that can perform additional functionalities such as lighting"[11]. Fans can be further classified as table fans, floor standing fans, pedestal fans, wall-mounted fans, tower fans and ceiling fans.

Table 1: Construction types of comfort fans according to the definitions in the Ecodesign preparatory study for comfort fans [9]

Source: Solis

Source: Satrap

Source: CasaFan

Table fan

Table fans are suitable for individuals but cannot ventilate larger rooms. Table fans are usually not height-adjustable, so the user needs to improvise to set the right height.

Floor standing fan

Floor standing fans - sometimes also called air circulators - provide an intensive circulation of air in a room. They should not be directed against a person because of their strong airflow.

Pedestal fan

Pedestal fans are ideal for larger rooms, as they are often height-adjustable and rotatable and can therefore reach the whole space.

Tower fan

Tower fans produce a lower airflow and are less energy-efficient than floor fans, but the airflow produced is evenly distributed and can feel more pleasant to the user. The rotor blades are not visible from the outside, which can give a feeling of higher safety to certain people.

Ceiling fan

Due to the large rotor blades, they are very efficient and quiet. Some models have integrated lamps. Ceiling fans must be installed fixedly.

Today many hybrid fans are appearing on the market such as fans with air filtration systems, humidifying or heating functions. These products are situated in a higher price segment. This paper covers simple comfort fans. The energy efficiency of the fan for hybrid fans can still be assessed if the hybrid functions can be disabled during the product testing.

Environmental dumping

Environmentally harmful product dumping (hereinafter referred to as "environmental dumping") is a practice historically associated with the export of hazardous product waste and associated unwanted chemicals from a developed country for irresponsible and often illegal disposal in a developing country [1]. Anderson et al. (2018) expanded the definition which now also refers to the practice of exporting products or technologies that cannot be legally sold in the country of origin because of environmental, safety, energy efficiency or any other product standards to another country or territory with less stringent or non-existent regulations. This practice undermines the ability of the importing country to fulfil their environmental objectives and is contrary to the interest of consumers.

Energy efficiency measurement method

The performance and energy consumption of comfort fans is measured with the International Electrotechnical Commission (IEC) standard 60879:2019 "Performance and construction of electric circulating fans and regulators". The standard "specifies the performance-measuring methods of

comfort fans and regulators for household and similar purposes, including conventional fans, tower fans and bladeless fans, their rated voltage being not more than 250 V for single-phase fans and 480 V for other fans, and their rated power input being less than 125 W" [19]. The standard also includes functional requirements as well as recommended design values in terms of preferred sizes that lead to the common declared characteristics of products that are observed on the market. The fan "Service Value" is a metric used across many countries or regions such as China or Malaysia. Most countries using the Service Value as the main metric also have measurement standards that are based on IEC 60879:2019 [7]. It is the main metric to calculate the energy efficiency of comfort fans and is expressed in m³/min/W. It is a ratio of the flow generated to the electrical power absorbed and is measured at maximum speed. The flow is measured without any oscillation function of the fan. When this metric is used as a criterion for the minimum requirements, manufacturers are incentivized to optimize the motor efficiency and the overall design of the device including the blades to displace a maximum amount of air per Watt.

Service Value =
$$\frac{m^3}{\frac{min}{W}}$$

Well-designed blades will displace more air per minute (high m³/min) and an efficient motor will require a low power input to rotate at full capacity (low power input, W). A comfort fan can reach a high Service Value by increasing the airflow, decreasing the power input or by doing both.

Ceiling fans are in general subject to higher requirements than other types of fans because of their larger blade sweep and their ability to displace more air.

European market for comfort fans

The EU Ecodesign preparatory study for air conditioners and comfort fans [9] estimated that the annual sales of comfort fans in the EU increased from 10 to 25 million units from 2000 to 2005 with a peak in sales in 2004 with 35 million units, because of a strong heat wave in that year. Sales are strongly correlated with the weather, which means that they are expected to grow as summers get warmer as consequence of climate change. This can also be confirmed for example by the supply shortages faced by retailers in recent years in France, Germany, and the United Kingdom ([17],[4],[20]) in the first half of the year. Since then, heat waves have been regularly occurring in the summer throughout Europe.

In the EU Ecodesign review study [13], the sales and trades of comfort fans in the EU countries were estimated to be in between 20 and 30 million units per year for the period between 2009 and 2015. The study further assumes that sales of comfort fans will progressively decline due to the competition with air conditioners (17 million units sold in 2025). This assumption has proven to be incorrect so far, as shown by recent UN Comtrade data showing that imports of fans in the EU-28 actually have doubled, reporting an import of 52 million units in 2020.

Figure 1: Total units of comfort fans below 125 W sold and traded in the EU from 2009 to 2015 and 2020. ([13],[26]).

The sales data shows that the estimates from the preparatory study underestimated the market for comfort fans, given that they are for consumers a quick and cheap solution in cases of extreme heat waves.

European regulatory framework for comfort fans

In the EU, the Ecodesign Commission Regulation (EU) No 206/2012 defines product information requirements for air conditioner and comfort fans. However, the regulation does not set any further requirements such as noise limits or MEPS for them. The review study for the air conditioners and comfort fans regulation [13] mentions that due to a lack of data on comfort fans (i.e., data on product efficiency, energy consumption) in the EU at the time of policy design for Commission Regulation (EU) No 206/2012, the European Commission introduced just product information requirements to begin a systematic product data gathering process. The data from these information requirements was supposed to be monitored and collected by market surveillance authorities and to be used for setting future minimum energy efficiency requirements when a review of the regulation takes place.

Table 1: Information requirements for comfort fans in Commission Regulation (EU) No 206/2012

Information to identify the model(s) to which the information relates to			
Description	Symbol	Value	Unit
Maximum fan flow rate	F	[x,x]	m³/min
Fan power input	Р	[x,x]	W
Service Value	SV	[x,x]	(m³/min)/W
Standby power consumption	PSB	[x,x]	W
Fan sound power level	LWA	[x,x]	dB(A)
Maximum air velocity	С	[x,x]	meters/sec
Measurement standard for service value	[State here the reference to measurement		
	standard used]		
Contact details for obtaining more information	Name and address of the manufacturer or of		
	its authorized representative		

The Ecodesign regulation for air conditioners and comfort fans is currently being reviewed, but the review study [13] brought only very little new knowledge on this product category. It discusses comfort fans only very briefly, refers mostly to the 2008 Preparatory Study and explains that due to a persistent lack of data concerning the comfort fan products on the market, it cannot draw any further conclusions. In comparison to air conditioners (the other product category covered by Commission Regulation (EU) No 206/2012) comfort fans appear to be less complex and might represent a comparatively smaller energy savings potential. Because of a lack of information, after the request from stakeholders, the European Commission published an Addendum Report for comfort fans [15]. The most recent draft regulation [14] contains at least a proposal for MEPS for comfort fans (Table 2), which follows the same approach as the Chinese MEPS. Accordingly, MEPS are based on the Service Value and differ according to the size of blade sweep (Table 3).

Table 2: Proposed MEPS for comfort fans in the EU draft regulation for ACs and comfort fans [14]

Comfort Fan categories	SV (m³/min)/W
All comfort fans, except ceiling fans, with a fan diameter ≥ 20 and < 25 cm	0.5
All comfort fans, except ceiling fans, with a fan diameter ≥ 25 and < 30 cm	0.65
All comfort fans, except ceiling fans, with a fan diameter ≥ 30 and < 40 cm	0.75
All comfort fans, except ceiling fans, with a fan diameter ≥ 40 and < 50 cm	1.08
All comfort fans, except ceiling fans, with a fan diameter ≥ 50 and < 60 cm	1
All comfort fans, except ceiling fans, with a fan diameter ≥ 60 cm	1.1
Ceiling fans, with a fan diameter > 0 and < 60 cm (23")	1.4
Ceiling fans, with a fan diameter > 60 and < 90 cm (35")	2.6
Ceiling fans, with a fan diameter ≥ 90 and < 120 cm	3.1
Ceiling fans, with a fan diameter ≥ 120 and < 140 cm	4.0
Ceiling fans, with a fan diameter ≥ 140 and < 150 cm	4.1

Ceiling fans, with a fan diameter ≥ 150 cm	4.3

Minimum requirements for tower fans were not included in the draft regulation because the review study concluded that the IEC 60879:1986 standard still valid at that time did not include a measurement method for tower fans. This is however not correct anymore, as the new 2019 version of the standard (published after the end of the review study) added a measurement method also for tower fans and bladeless fans. Indeed, the whole review study, impact assessment and recommendations for policy design used for the still on-going revision process are essentially based on a previous and out-dated version of the IEC standard and not the newly published version, which was already under preparation at that time.

Energy efficiency requirement for comfort fans in Asia

Overall, several countries in Asia already have regulations in place that set minimum energy efficiency requirements for comfort fans. Indonesia is in the process of setting MEPS for these products as well [7].

China

In China, the regulation GB 12021.9 (2008) for comfort fans sets MEPS and includes an energy labelling scheme for these products. The metric used is the Service Value and the national measurement standard is based on the IEC 60879 (year unknown). The MEPS level is set at the energy efficiency grade three.

Table 3: China's energy efficiency grades for electric fans expressed in m3/min/W [5].

Type Specification		Specifications	Energy effici	ency value	
		(mm)	Energy efficiency grade		
			1	2	3 (= MEPS
					Level)
Table fans,	Capacitive	200	0.71	0.60	0.54
rotary fans,	Shaded pole		0.63	0.51	0.45
wall fans, box	Capacitive	230	0.84	0.70	0.64
fans, stand	Shaded pole		0.65	0.57	0.50
fans	Capacitive	250	0.91	0.79	0.74
	Shaded pole		0.72	0.61	0.54
	Capacitive	300	0.98	0.86	0.80
		350	1.08	0.95	0.90
		400	1.25	1.06	1.00
		450	1.42	1.19	1.10
		500	1.45	1.25	1.13
		600	1.65	1.43	1.30
Ceiling Fans	Capacitive	900	2.95	2.87	2.75
		1050	3.10	2.93	2.79
		1200	3.22	3.08	2.93
		1400	3.45	3.32	3.15
		1500	3.68	3.52	3.33

The regulation also sets noise limit requirements according to the type of fans and the size of the blades.

The standard was revised in 2021 and the new version will be implemented in November 2022. In this new version additional requirements were made on standby consumption and the MEPS were significantly increased for all product types [21]. The proposed MEPS from the European Commission are much weaker than the new MEPS that have been adopted by China. The proposal from the Commission should therefore be reconsidered and aligned with the new Chinese standard.

Туре	Size (mm)	Energy efficiency value		
	, ,	Energy efficiency grade		
		1	2	3 (= MEPS Level)
Table fans,	200	1.00	0.70	0.45
rotary fans, wall	200 < X ≤ 230	1.10	0.84	0.55
fans, box fans,	230 < X ≤ 250	1.30	0.95	0.65
stand fans	250 < X ≤ 300	1.50	1.05	0.78
	300 < X ≤ 350	1.65	1.15	0.93
	350 < X ≤ 400	1.85	1.35	1.03
	400 < X ≤ 450	2.15	1.50	1.15
	450 < X ≤ 500	2.40	1.55	1.20
	500 < X ≤ 600	2.65	1.70	1.37
Ceiling Fans	900	3.95	2.95	2.75
-	900 < X ≤ 1050	4.40	3.10	2.79
	1050 < X ≤ 1200	4.52	3.22	2.93
	1200 < X ≤ 1400	4.75	3.45	3.15
	1400 < X ≤ 1500	4.98	3.68	3.33
	1500 < X ≤ 1800	5.11	3.81	3.47

The table below compares the MEPS for comfort fans of the EU proposal [15] with the MEPS of the Chinese MEPS from 2008 and 2022 ([21], [22]). The highlighted cells show the most ambitious MEPS levels. With the new Chinese MEPS, the requirements for all fans will be more stringent than the European proposal except for very small fans and ceiling fans.

Table 4: Comparison of draft European regulation MEPS and Chinese MEPS from 2008 and 2022 ([15], [21], [22])

Туре	Size (mm)	EU Proposal	China (2008)	China (2022)
Table fans	200	0.5	0.45	0.45
Rotary fans Wall fans	200 < X ≤ 230	0.5	0.45	0.55
Box fans	230 < X ≤ 250	0.5	0.5	0.65
Stand fans	250 < X ≤ 300	0.65	0.54	0.78
	300 < X ≤ 350	0.75	0.8	0.93
	350 < X ≤ 400	0.75	0.9	1.03
	400 < X ≤ 450	1.08	1.00	1.15
	450 < X ≤ 500	1.08	1.10	1.20
	500 < X ≤ 600	1	1.13	1.37
Ceiling Fans	900	3.1	2.75	2.75
	900 < X ≤ 1050	3.1	2.75	2.79
	1050 < X ≤ 1200	3.1	2.79	2.93
	1200 < X ≤ 1400	4.0	2.93	3.15
	1400 < X ≤ 1500	4.1	3.15	3.33
	1500 < X ≤ 1800	4.3	3.33	3.47

India BEE voluntary labelling scheme for ceiling fans

The India Bureau of Energy Efficiency (BEE) initially set up a voluntary labelling scheme for ceiling fans. The scheme was supposed to become mandatory in July 2020 [6], however, it has been postponed due to the Coronavirus pandemic. It is now expected to come into force in July 2022 [21].

The star rating plan for ceiling fans is shown in Table 5.

Table 5: Star Rating Index Calculation for Ceiling Fans [3]

Star Rating	Service Value for Ceiling Fans for sweep size < 1200 mm (i.e., 900 mm and 1050 mm)	Service Value for Ceiling Fans for sweep size ≥ 1200 mm (i.e., 1200 mm, 1400 mm, and 1500 mm)
1 Star	≥ 3.2 to < 3.4	≥ 4.0 to < 4.5
2 Star	≥ 3.4 to < 3.6	≥ 4.5 to < 5.0
3 Star	≥ 3.6 to < 3.8	≥ 5.0 to < 5.5
4 Star	≥ 3.8 to < 4.0	≥ 5.5 to < 6.0
5 Star	≥ 4.0	≥ 6.0

Malaysia

The requirements for comfort fans are also based on the Service Value although the regulation uses the term "Coefficient of performance (COP)". The regulation uses a star rating for the different classes of energy efficiency [8]. The MEPS are currently set at the 2-star level (Table 6).

Table 6: Malaysia's star rating for electric fans (Attorney General's Chambers of Malaysia, 2013)

Star rating	Ceiling fan	Pedestal, wall, and desk fan
	Minimum COP	Minimum COP
5	≥ 3.00	≥ 1.20
4	2.74 – 2.99	1.12 – 1.19
3	2.66 – 2.73	1.08 – 1.11
2 (MEPS)	2.58 – 2.65	1.01 – 1.07
1	2.50 – 2.57	0.93 – 1.00

Vietnam

In Vietnam the MEPS are also based on the Service Value and are set according to the blade sweep (D) [24]. The Service Value is measured according to a standard that is equivalent to IEC 60879 [7]. In the labelling scheme there are five energy efficiency levels (R), which are determined by the ratio of the measured energy efficiency to the minimum energy performance standard (Table 7 and Table 8).

Table 7: Minimum energy efficiency for table vertical and wall fans in Vietnam [24]

Blade sweep (mm)	MEPS (m³/min/W)
D < 230	0.54
230 ≤ D < 250	0.64
250 ≤ D < 300	0.74
300 ≤ D < 350	0.80
350 ≤ D < 400	0.90
400 ≤ D < 450	1.00
450 ≤ D < 500	1.10
500 ≤ D < 600	1.13
D ≥ 600	1.30

Table 8: Minimum energy efficiency for ceiling fans in Vietnam [24]

Blade sweep (mm)	MEPS (m³/min/W)
D < 900	2.75
900 ≤ D < 1050	2.79
1050 ≤ D < 1200	2.93
1200 ≤ D < 1350	3.04
D ≥ 1350	3.15

Market-based data analysis

In 2018, Topten performed an assessment of the comfort fans sold in Switzerland with the intention of creating a product list with the most efficient products. All requirements of Commission Regulation (EU) No 206/2012 were adopted in Switzerland as well. The information requirements for comfort fans are identical and also mandatory in Switzerland. Topten product lists in general select the most efficient products on the market. The steps taken to initially create a product list are the same for all product

categories. Topten first creates an overview of the products available on the market, and based on that data, determines selection criteria to select the best performing units.

Topten collected the product information for comfort fans on the websites of approximatively 39 manufacturers and 6 retailers. Most of the assessed manufacturers are also present in the European Union. When a product did not display the information required by the information requirements of Commission Regulation (EU) No 206/2012 or the information needed to calculate the Service Value, Topten first downloaded the product information sheets and user manuals to verify if the information was present in these documents. When the information was still missing, Topten directly contacted the manufacturers and importers asking them for the data (for data information requirements see Table 1). In many cases, Topten had to explain what was the information that was being requested as the manufacturers or importers were unaware that such requirements existed or what the data was.

Results

In the market overview, Topten evaluated 158 models of comfort fans that were on sale in Switzerland in 2018. Out of these 158 models, only eight declared all the information that is required by Commission Regulation (EU) No 206/2012. From the manufacturers, Topten received enough data to assess or calculate the Service Value of 67 models. In total - together with own research - it could assess the performance of 75 models (Table 9).

It is not clear why the product data for these products is so scarce. Some manufacturers did not even know that these requirements existed. To assess whether this was only an issue in the Swiss market, surveys on websites of other European retailers and the European websites of manufacturers showed that this lack of product declaration existed in other countries. Market surveillance authorities are responsible for the correct product declaration, and it is likely that since these products are not subject to any MEPS, they do not list high on their priority list, leaving no enforcement of the regulation to take place.

Table 9: Assessment of comfort fans for a Topten product list (data gathered by Topten, 2018)

Number of models evaluated	158
Number of models that fulfill the product information requirements of	8
Commission Regulation (EU) No 206/2012	O
Number of models for which data was received after contacting the	67
manufacturer	07
Total number of models with complete product information, complemented by	75
own research	75

This paper shows that the information requirements are rarely respected. The product survey showed that in most cases (89% of all products), products do not comply with the regulation already in force (i.e., the product information requirements). The information requirements were set in 2011 to gather data for the review of Commission Regulation (EU) No 206/2012. However, the situation with a persistent lack of data is jeopardizing the introduction of MEPS for comfort fans also in the current revision process of Commission Regulation (EU) No 206/2012, because not much more official data on product performance is available today.

The data shows that there is no clear correlation between the "fan input power" and the "maximum airflow". As expected, the average maximum airflow of some fan types is higher than others. The design of the blades and their size play a substantial role in the effectiveness of the fans. The "Service Value" takes both aspects into account.

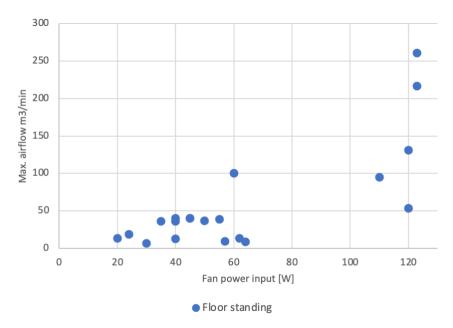


Figure 1: Distribution of floor standing comfort fans according to maximum airflow [m³/min] and fan power input [W] (data gathered by Topten, 2018)

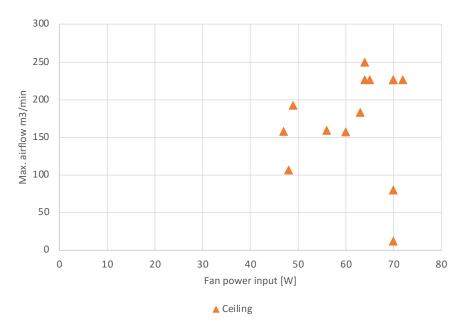


Figure 2: Distribution of ceiling comfort fans according to maximum airflow [m³/min] and fan power input [W] (data gathered by Topten, 2018)

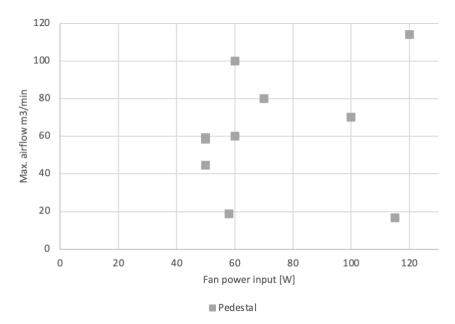


Figure 3: Distribution of pedestal comfort fans according to maximum airflow [m³/min] and fan power input [W] (data gathered by Topten, 2018)

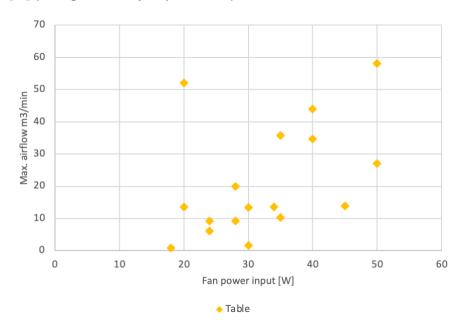


Figure 4: Distribution of table comfort fans according to maximum airflow [m³/min] and fan power input [W] (data gathered by Topten, 2018)

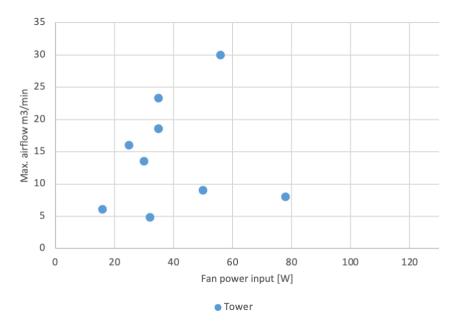


Figure 5: Distribution of tower comfort fans according to maximum airflow [m³/min] and fan power input [W] (data gathered by Topten, 2018)

Topten criteria definition for comfort fans

Based on the available data from the 75 models, Topten empirically determined the selection criteria for each fan construction type. Using the Service Value as the parameter for the selection criteria (Figure 6), it defined a threshold that would select the top 50% of available models for the product list (Table 10)¹. The criteria could not be too stringent for this specific product group, because the product list would otherwise only contain a few models and would not be useful to the consumer. Also, as a rule for Topten, the selection criteria must be straightforward and easy for consumers to understand. Therefore, for these two reasons, Topten also did not use the Chinese MEPS as references (where the Service Value threshold depends on the size of the blade sweep), because there would be 1) too few products on the list and 2) the criteria would be too complicated to understand for consumer. It therefore opted for one Service Value threshold for each construction type.

-

¹ Topten product lists usually select the top 20% -30% performing products available on the market. In some cases, when the product is an alternative for another product (group) that consumes more energy, the selection criteria are more lenient. In this case comfort fans are an alternative to air conditioners (especially portable units), which consume much more electricity. Therefore, the selection criteria are more lenient and encompass 50% of the existing market.

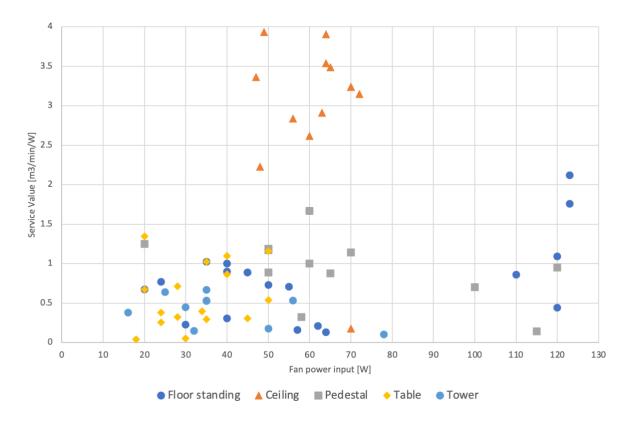


Figure 6: Distribution of fans (according to construction types) in relation to the Service Value. The Topten selection criteria were based on the service value and selected the 50% best performing products (data gathered by Topten, 2018).

As the Topten product list went online for the first time in May 2018, it contained 41 models of comfort fans. In the subsequent years, manufacturers announced new products and the list could grow. As of May 2022, 120 models are listed on Topten. The Topten selection criteria were also strengthened in 2021 for table and floor standing fans as the number of efficient models grew (Table 10).

Table 10: Topten selection criteria for comfort fans [25]

Construction type	Topten selection criteria (2018) Service value (m³/min/W)	Revised selection criteria (2021) Service value (m³/min/W)
Pedestal	≥ 1.00	≥ 1.00
Ceiling	≥ 2.75	≥ 2.75
Table	≥ 0.50	≥ 0.80
Floor standing	≥ 0.75	≥ 0.80
Tower	≥ 0.45	≥ 0.45

Comparison of comfort fans on the European market with the Chinese MEPS

Most comfort fans being imported into the European Union are produced in China. According to UN Comtrade (2020), this amounts to 95% of units by volume or 90% by value. For this reason, the energy efficiency of the models that were part of the market assessment in 2018 (data on all products on the market) and the energy efficiency of the products of the Topten list in 2021 (best performing products of the market) were compared to the MEPS that were into force in China in 2018 and that are still in force in 2022.

Comparison with the 2018 sample

A great part of the imported comfort fans is inefficient. Out of the 75 models with complete product data, 32 models did not comply with the Chinese MEPS (Figure 7 to Figure 9). It can be expected that the performance of the remaining models with no product declaration is also low as there is often a reporting bias as good performers tend to report more frequently than bad performers. The share of models from the market assessment that did not fulfil the Chinese MEPS in 2018 (42%) shows the extent of the potential environmental dumping in the European market.

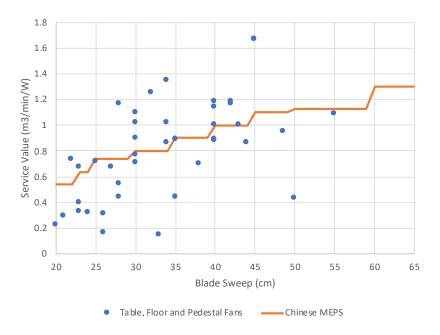


Figure 7: Comparison of table, floor, and pedestal comfort fans with the Chinese MEPS (data gathered by Topten, 2018).

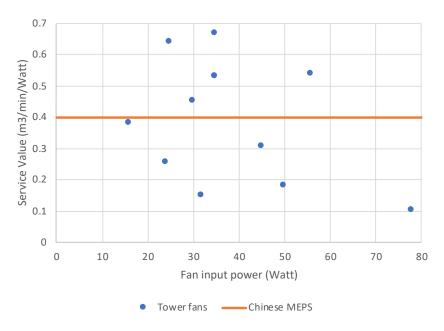


Figure 8: Comparison tower comfort fans with the Chinese MEPS (data gathered by Topten, 2018).

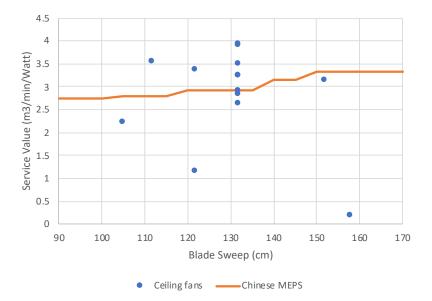


Figure 9: Comparison of ceiling comfort fans with the Chinese MEPS (data gathered by Topten, 2018).

Comparison with Topten product list (2021)

A similar comparison was made with the models that are listed on the Topten product list for comfort fans in Switzerland (2021). As a reminder, a Topten product list shows the most efficient products that are currently available on the domestic market. The selection criteria are determined empirically by selecting the top performing products on the market. The 2021 sample does not look at the overall market as it was the case in 2018. The aim was to assess whether there were improvements made among the top performing products on the market.

The 119 models listed on Topten in December 2021 were the models that fulfilled Topten's selection criteria and can be considered as the top performing models available on the market at that time. Since setting the initial selection criteria in 2018, the 2021 Topten list focuses on the current best performing products and does not consider all the products on the market that do not fulfil these criteria. It is therefore likely that the 2021 Topten product list does not exactly correspond anymore to the top 50% performing products on the market, but a much more comprehensive new market analysis would be needed to assess this aspect more in detail.

Nevertheless, the findings for 2021 are very clear. Out of the 119 products listed in 2021, 12 Topten products did not comply with the MEPS that are currently still into force in China. Among these are three floor standing fans, six ceiling fans, two pedestal fans and one table fan. Furthermore, three additional models did not comply with the Chinese noise limits. This means that some of the best models in Europe do not comply with the Chinese MEPS.

Table 11: Number of products on Topten that did not fulfill the requirements of the Chinese MEPS (Topten data, 2021)

	2018	2021
Topten products that do not comply with the Chinese MEPS	10 models (24%)	12 models (9%)

A smaller proportion of models do not fulfil the requirements of the Chinese MEPS because Topten could strengthen the selection criteria for two fan construction types (Table 10). The increase in the size of the Topten product list is a positive sign that manufacturers also started paying more attention to the information requirements and started reporting the data requested by Commission Regulation (EU) No 206/2012.

If even some Topten eligible models do not comply with the Chinese MEPS, this means that many of the comfort fans that do not fulfil the Topten selection criteria, most likely don't fulfil the Chinese MEPS as well.

Conclusion

The analysis of the data gathered by Topten showed that many comfort fans that are being imported to Europe are inefficient. Products that are not allowed to be sold domestically in the country of origin (i.e., China) are still being manufactured with the intention of exporting them to countries or regions with lower or no requirements in terms of energy efficiency. This practice is a case of environmental dumping and although it is legal, it is clearly against the interests of the customers in the importing countries, which are often not aware that they are receiving low quality products that even the exporting country does not want to use for its own market. Although the current Ecodesign review study uses a statement from the 2012 Impact assessment stating that "setting efficiency requirements at similar level as in China/Taiwan with risk of removing virtually all comfort fans from the EU market" ([12]. p. 29), this argument is definitively not valid anymore, as Topten shows that there are already in 2021 manyayailable efficient products. To mitigate this situation, it is important for the importing countries or importing regions (i.e., the European Union) to set their own requirements that are more stringent than the requirements of the exporting country or at least to harmonize them with the ones of the country of manufacturing. As it stands today, even if the European proposal is adopted, environmental dumping will still be occurring. The requirements in China have been into force since 2008, obviously without hampering the market of efficient and affordable comfort fans there. With the new standard coming into force (2022), the same minimum performance requirements in Europe should be implemented and should be quite simple as the groundwork has already been laid for policy and technology. Without doubt, this will in return also provide the European consumers (and potentially also other world-regions) with better and more efficient products that improve their quality of life. Indeed, a consumer might need to buy several inefficient fans to achieve the same results that an efficient fan would yield for less money and energy.

Another concern are the exceedingly high MEPS levels for ceiling fans in the European proposal. For example, these MEPS are higher than the Topten criteria, which is a service value of 2.75. These products are still not very common in Europe, but they provide a very nice cooling effect and could be very effective in replacing and avoiding the new installation of air conditioners. These extremely high MEPS could make it much more difficult for these products to take off.

On the side of European policymaking, the current process of joint regulation for air conditioners and comforts fans clearly acts in disfavour of comfort fans, as all the attention in the review process is being focused on air conditioners. In fact, comfort fans are barely mentioned throughout the whole process. The recommendations on policy design for fans are placed in an annex and are - even worse - based on a previous and out-dated version of the applicable IEC standard (stemming from decades ago). One of the main justifications given by the EU review study for the lack of new information throughout the document is the supposedly missing product data on the energy efficiency of the comfort fans on the market, despite the (obviously not enforced) EU product information requirements being into force for many years. On the other hand, comfort fans alone with approximately 50 million units sold in 2020 already exceed by far the threshold defined in the Ecodesign Directive [10] of more than 200,000 units sold per year to be covered by an implementing measure. Multifunctional products should not be a reason to avoid regulating comfort fans. Ecodesign has already tackled other products that are even more complex and therefore should be able to find a solution to tackle these products. Other countries that already have regulations in place also have multifunctional products on their markets.

Additionally, for the second requirement of the Ecodesign Directive on the significant saving potential, the addendum report expects the energy savings to be in between 1 and 2 TWh by 2030 if at least the same MEPS as the ones in place in China and Taiwan were introduced [15]. The current review study still uses the same assumptions on energy savings, which are most likely much too low considering that actual sales have increased dramatically and clearly do not reflect the assumptions of the review study. Accordingly, the actual energy saving potential is expected to be even higher and therefore also fulfil the second criteria of the Ecodesign Directive on significant saving potential in the European Union in any case. Moreover, efficient and effective fans serve as an viable alternative to air conditioners in certain conditions. The use of fans could curb the increase of air conditioners and therefore lead to an overall energy saving.

Therefore, the EU should definitely implement at least the same minimum performance requirements as in the main exporting countries of comfort fans (i.e. China) or, even better, own EU requirements that are more stringent to use the full saving potential of the many efficient products already available on the market (as shown by the Topten product list). Based on this Topten study, it is also urgently recommended to the European Commission to include MEPS also for tower fans and bladeless fans or to include at least a special early revision clause for these product groups, as a new IEC standard also covering these types of fans is available since 2019. Furthermore, to achieve the targets of Ecodesign more effectively, it is also recommended to the European Commission to separate the two product groups of ACs and comfort fans from one another in future preparatory and review studies.

References:

- [1] Andersen, S. et al. (2018), Defining the Legal and Policy Framework to Stop the Dumping of Environmentally Harmful Products, 29 Duke Environmental Law & Policy Forum 1-48. Available at: https://scholarship.law.duke.edu/delpf/vol29/iss1/1
- [2] Attorney General's Chambers of Malaysia (2013). Federal Government Gazette: Electricity (amendment) Regulations 2013. Available at: https://www.st.gov.my/en/contents/article/polisi/regulation_suruhanjaya/20130503_P_U_A_15
 1-PERATURAN PERATURAN ELEKTRIK PINDAAN 2013.pdf
- [3] BEE (2019). Amendment to Schedule 8 for Ceiling Fans. Available at: http://beestarlabel.com/Content/Files/Schedule8-CF.pdf
- [4] Chip.de (2018). Super-Hitze über Deutschland: Warum es schwer ist, Ventilatoren zu kaufen. Published on 05.08.2018. Available at: https://www.chip.de/news/Hitzewelle-hat-Deutschland-im-Griff-Viele-Produkte-sind-fast-ueberall-schon-ausverkauft 145735125.html
- [5] China National Institute of Standardization. GB12021.9-2008 Minimum allowable values of energy efficiency and energy efficiency grades for AC electric fans
- [6] CLASP (2019). India Raises the Bar on Ceiling Fan Energy Efficiency. Available at : https://www.clasp.ngo/updates/india-raises-the-bar-on-ceilingfan-energy-efficiency/
- [7] CLASP, PwC. (2020). Indonesia Fan Market Study and Policy Analysis. Available at: https://www.clasp.ngo/research/all/indonesia-market-study-and-policy-analysis-for-fans/#
- [8] Department of standards Malaysia (2014). MS 2574:2014. Minimum energy performance standards (MEPS) for domestic fan.
- [9] EC (2008). Preparatory study on the environmental performance of residential room conditioning appliances (airconditioners and ventilation): Study on comfort fans –final report. Available at: https://circabc.europa.eu/sd/d/ffd313a4-71b2-4ed6-9a3f-37d639be51d5/CF%20 %20Comfort%20fans%20 %20final%20report.pdf
- [10] EC (2009). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0125
- [11] EC (2012a). Commission Regulation (EU) No 206/2012 of 6 March 2012 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for air conditioners and comfort fans Text with EEA relevance. Available at: https://eur-lex.europa.eu/eli/reg/2012/206/oj
- [12] EC (2012b). Commission Staff Working Document. Full Impact assessment accompanying the document: Proposal for a Commission Regulation implementing Directive 2009/125/EC of the European Parliament and of the Council with regards to ecodesign requirements for air conditioners and comfort fans. Available at: https://ec.europa.eu/energy/sites/ener/files/documents/en_impact_assesment.pdf

- [13] EC (2018). Review of Regulation 206/2012 and 626/2011: Air conditioners and comfort fans Final version. Available at https://hal-mines-paristech.archives-ouvertes.fr/hal-01796759/document
- [14] EC (2019). Draft text of COMMISSION REGULATION (EU) .../... of XXX laying down ecodesign requirements for air-to-air air conditioners, air-to-air air heat pumps and comfort fans pursuant to implementing Directive 2009/125/EC of the European Parliament and of the Council and repealing Regulation No 206/2012 with regard to ecodesign requirements for air conditioners and comfort fans
- [15] EC (2021). Review of Regulation 206/2021 and 626/2011, Air conditioners and comfort fans, Addendum regarding Comfort fans.
- [16] EnvillanceAsia (2021). China issues revised mandatory standards for energy efficiency of fans. Published on 10.12.2021. Available at: https://envillance.com/regions/east-asia/cn/report_4885.
- [17] Francebleu (2019). Canicule: rupture de stock sur les ventilo. Published on 22.07.2019. Available at: https://www.francebleu.fr/infos/meteo/canicule-rupture-de-stock-sur-les-ventilo-1563566925
- [18] Hu, B., Zhao, F. (2014). Energy efficiency Fans: China. Big EE: Appliance Guide. Available at: https://bigee.net/media/filer-public/2017/04/27/bigee-china-fans-1212.pdf
- [19] IEC (2019). IEC 60879:2019. Performance and construction of electric circulating fans and regulators. Available at: https://webstore.iec.ch/publication/26458
- [20] Itv (2018). Sales of fans soar as households struggle to cope with heatwave. Published on 24.07.2018. Available at: https://www.itv.com/news/2018-07-24/sales-of-fans-soar-as-households-struggle-to-cope-with-heatwave.
- [21] National Standardization Administration Beijing (2008). Electric fan energy efficiency limit value and energy efficiency grade. Available at: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=47F0F48BC6F24AFFC82765847DC65 F1B
- [22] National Standardization Administration Beijing (2022). Electric fan energy efficiency limit value and energy efficiency grade. Available at: http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=91AD3442EF85B846C4DB9879198D200E
- [23] The New Indian Express (2020). BEE postpones rollout of new energy norms for fans. Published on June 13th, 2020. Available at: https://www.newindianexpress.com/business/2020/jun/13/bee-postpones-rollout-of-new-energy-norms-for-fans-2156062.html
- [24] TCVN 7826:2015. Electric fans Energy Efficiency Ratio. Available at: https://thuvienphapluat.vn/TCVN/Dien-dien-tu/TCVN-7826-2015-Quat-dien-Hieu-suat-nang-luong-915347.aspx
- [25] Topten.eu (2021). Selection Criteria for Comfort Fans. Available at: https://www.topten.eu/private/selection-criteria/comfort-fans
- [26] UN Comtrade (2021). Data on Fans; table, floor, wall, window, ceiling, or roof fans, with a self-contained electric motor of an output not exceeding 125W. Available at: https://comtrade.un.org